
LLNL-JRNL-563772

3D Moving-Mesh Simulations of
Galactic Center Cloud G2

P. Anninos, P. C. Fragile, J. Wilson, S. D. Murray

July 10, 2012

Astrophysical Journal



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



3D Moving-Mesh Simulations of Galactic Center Cloud G2

Peter Anninos

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

P. Chris Fragile1, Julia Wilson

Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA

and

Stephen D. Murray

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

ABSTRACT

Using three-dimensional, moving-mesh simulations, we investigate the future

evolution of the recently discovered gas cloud G2 traveling through the galactic

center. We consider the case of a spherical cloud initially in pressure equilibrium

with the background. Our suite of simulations explores the following parameters:

the equation of state, radial profiles of the background gas, and start times for

the evolution. Our primary focus is on how the fate of this cloud will affect the

future activity of Sgr A*. From our simulations we expect an average feeding

rate in the range of 5 − 19 × 10−8M⊙ yr−1 beginning in 2013 and lasting for at

least 7 years (our simulations stop in year 2020). The accretion varies by less

than a factor of three on timescales ≤ 1 month, and shows no more than a factor

of 10 difference between the maximum and minimum observed rates within any

given model. These rates are comparable to the current estimated accretion rate

in the immediate vicinity of Sgr A*, although they represent only a small (. 5%)

increase over the current expected feeding rate at the effective inner boundary

of our simulations (r = 750RS ≈ 1015 cm), where RS is the Schwarzschild radius

of the black hole. Therefore, the break up of cloud G2 may have only a minimal

effect on the brightness and variability of Sgr A* over the next decade. This is

because current models of the galactic center predict that most of the gas will

be caught up in outflows. However, if the accreted G2 material can remain cold,

it may not mix well with the hot, diffuse background gas, and instead accrete
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efficiently onto Sgr A*. Further observations of G2 will give us an unprecedented

opportunity to test this idea. The break up of the cloud itself may also be

observable. By tracking the amount of cloud energy that is dissipated during

our simulations, we are able to get a rough estimate of the luminosity associated

with its tidal disruption; we find values of a few 1036 erg s−1.

Subject headings: galaxies: active — galaxies: ISM — Galaxy: center — Galaxy:

nucleus

1. Introduction

Sgr A*, the supermassive black hole at the center of the Milky Way galaxy, is the most

underluminous black hole observed. It has a bolometric luminosity of. 1037 erg s−1 (Narayan

et al. 1998), which is less than 2× 10−8 of the Eddington luminosity, LEdd = 5.2× 1044 erg

s−1, for a MBH = 4.3 × 106M⊙ black hole (Gillessen et al. 2009). Part of the reason it is

so underluminous is that it is starved for material. At present, its accretion is fed by hot

(kBT ≈ 1.3 keV) gas, possibly expelled in the winds of luminous young stars that are orbiting

within its vicinity (Krabbe et al. 1991; Melia 1992; Baganoff et al. 2003). The electron

number density of this gas, ne ≈ 26 cm−3, suggests a Bondi feeding rate of ≈ 10−5M⊙ yr−1

(Yuan et al. 2003) at rBondi = GMBH/c
2
s,b ≈ 3.4 × 1016 cm. However, measurements of

polarization, along with Faraday rotation arguments, constrain the accretion rate at the

black hole to be in the range 2× 10−9 < Ṁ < 2× 10−7M⊙ yr−1 (Aitken et al. 2000; Bower

et al. 2003; Marrone et al. 2007), suggesting it is difficult to actually get the gas down to the

black hole. This is consistent with a number of recent studies following the gas from these

stellar winds, which have identified a number of physical processes that can significantly

reduce the accretion efficiency, including expulsion due to hydrodynamic winds (Quataert

2004), hang up due to residual angular momentum (Mościbrodzka et al. 2006), and heating

due to electron thermal conduction (Shcherbakov & Baganoff 2010). Furthermore, some of

the stars may produce winds that are too fast to be captured efficiently (Cuadra et al. 2008).

Within this environment, Sgr A* may occasionally enjoy a relative feeding frenzy. Tidal

disruption of stars passing close to the black hole is one way the accretion rate could be

temporarily boosted. Such an event may have been recently observed in a z ≈ 0.35 galaxy

as the extremely luminous Swift transient event Sw 1644+57 (Bloom et al. 2011; Burrows

et al. 2011; Zauderer et al. 2011). Within the Milky Way, the star S2 has made the closest

observed approach to Sgr A*, passing within 120 AU at its orbital pericenter (Gillessen et al.

2009). Even so, to be disrupted, a star would need to pass within ∼ 1 AU of Sgr A*. Such

close passes are only expected to occur approximately once every 104 yr (see Alexander 2005,
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for a review).

A second option, and the one that we explore in this paper, is tidal stripping of gas

clouds passing through the galactic center. Gillessen et al. (2012) recently discovered a gas

cloud (dubbed G2) of ∼ 3 Earth masses on a highly eccentric orbit (e = 0.9384) approaching

Sgr A* (Schartmann et al. 2012). The cloud is expected to reach pericenter in 2013.5, at

a distance of approximately 270 AU (dperi = 4.0 × 1015 cm). Because the self-gravity of

the cloud is negligible (Burkert et al. 2012), it is certain to be tidally stretched. The main

questions are: 1) How much will hydrodynamic interactions with the background gas disrupt

the cloud; 2) How much of the cloud material will be captured by Sgr A*; and 3) On what

timescale will that captured material accrete?

To answer these questions we have performed three-dimensional hydrodynamic simula-

tions of the cloud’s infall. Simulations of this cloud have been done previously (Burkert et al.

2012; Schartmann et al. 2012), but only in two dimensions. Two-dimensional simulations

offer the advantage that they allow one to cover the enormous dynamical range between the

size of the cloud and the size of its orbit at reasonable computational expense. However, such

two-dimensional simulations are highly artificial. One reason is that, in a Cartesian grid,

a two-dimensional “cloud” has an infinite extent in its third dimension. Furthermore, the

enforced symmetry ignores the effects of tidal compression along this third dimension. Fi-

nally, hydrodynamic instabilities, such as Kelvin-Helmholtz and Rayleigh-Taylor, are known

to behave differently in two dimensions than in three (e.g. Sharp 1984; Fritts et al. 1996;

Kane et al. 2000; Young et al. 2001).

We were able to get around the problem of the extreme dynamical range by using the

moving mesh capability of Cosmos++ (Anninos et al. 2005; Fragile et al. 2012). This allows

our computational grid to follow the cloud along its orbit. Because we only need to resolve

the cloud and not the volume of its entire orbit, we are able to proceed in three dimensions

at reasonable computational expense.

The paper is organized as follows: In Section 2, we review the most pertinent details

about the cloud’s structure, internal properties, orbital parameters, and environment. These

are necessary for setting up the initial numerical problem, and also for estimating the relevant

timescales for this problem, which we do in Section 3. This provides an opportunity to

discuss the physical processes that will play a role in the disruption of the cloud as it passes

pericenter. As it turns out, many of the timescales for these processes are shorter than or

comparable to the orbital time. The competition among physical processes illustrates why a

numerical approach is essential. In Section 4, we present the results of our three-dimensional,

moving-mesh simulations following the cloud G2 through pericenter passage. We summarize

our findings in Section 5. Additionally, since this is our first introduction of moving meshes
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in Cosmos++, we provide a brief description of the equations in Appendix A.

2. Cloud Properties

Gillessen et al. (2012) detected the dense, dusty, and ionized gas clump, G2, with a dust

temperature of 550 K and a gas temperature of order 104 K, embedded in the diffuse 108 K

gas of the galactic center. They adopt an effective, spherical cloud radius in 2011.3 of 15 mas,

which corresponds to Rc = 1.875 × 1015 cm. The observed Brγ luminosity implies a cloud

density of ρc ≈ 6.1×10−19f
−1/2
V g cm−3, with a corresponding cloud mass ofMc ≈ 1.7×1028fV

g, or approximately 3 Earth masses, where fV ≤ 1 is the volume filling factor. We will use

this simple spherical approximation along with a filling factor fV = 1 and a uniform cloud

density to initialize our simulations, even though observations suggest that G2 might, in

fact, be the compact head of a larger, more diffuse distribution of cold gas (Burkert et al.

2012). Since the cooling timescale of the cloud is much shorter than its orbital period (see

Section 3), cooling plus ionization by the strong UV field of the central cluster of massive

stars should combine to maintain the cloud temperature at Tc = 104 K, which we take as its

initial value, although we also explore two non-isothermal models that are allowed to evolve

away from this temperature. Along with the ideal gas law, these parameters completely

specify the cloud properties.

We consider two models for the background medium. The first is based on the back-

ground parameters used in Burkert et al. (2012) and Schartmann et al. (2012), i.e.

ρb = 1.3× 10−21η

(
d

d1995

)−1

g cm−3 (1)

Tb = 1.2× 108
(

d

d1995

)−1

K. (2)

where d1995 = 104RS was the approximate distance of the cloud from Sgr A* in 1995.5 and

RS = 2GMBH/c
2 = 1.3 × 1012 cm is the Schwarzschild radius of the black hole. We have

assumed a mean molecular weight of µ = 0.614. The parameter η ≤ 1 is meant to account

for any unresolved X-ray sources contributing to the observed background X-ray luminosity

(Sazonov et al. 2012). In practice, we use this coefficient to adjust the background density

to ensure that the background is initially in pressure equilibrium with the cloud.

One problem with this background is that it is convectively unstable, as the entropy, S =

T/ρ2/3, decreases radially outward. In order to prevent the cloud from being disrupted by this

convectively unstable atmosphere, we follow the same procedure that Burkert et al. (2012)

and Schartmann et al. (2012) used to artificially stabilize it. This starts by additionally
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evolving a passive tracer field T . The tracer is initialized to the same value as the cloud

density inside the cloud and zero in the background. This allows us to later distinguish

between zones with pure atmospheric gas (T /ρ < 10−4) from those with significant cloud

material (T /ρ ≥ 10−4). Also, because the units we adopt in our calculations normalize the

total cloud mass to unity, the value of the tracer field is a measure of the zonal mass relative

to the total initial cloud mass. At the end of each computational cycle, zones identified as

pure atmosphere have their densities and temperatures reset to the background values given

in equations (1) and (2) and their velocities reset to zero. We tested other values (10−3 and

10−5) for the tracer floor and found that the mass accreted onto the black hole increases

only by about 3% with each factor of 10 that the tracer floor is lowered.

The second background we consider is based on a more careful fit to the galactic center

environment profile from Yuan et al. (2003), designed to match Chandra X-ray observations.

This gives a background of the form

ρb = 1.3× 10−21η

(
d

d1995

)−1.125

g cm−3 (3)

Tb = 108
(

d

d1995

)−0.75

K. (4)

Unlike the atmosphere in equations (1) and (2), this atmosphere is convectively stable.

Otherwise this background is implemented in the same way as the first one.

In both backgrounds we assume hydrostatic equilibrium within the gravitational poten-

tial of Sgr A*. This is certainly an oversimplification. Many physical processes are likely to

play a role in determining the detailed structure of the galactic center environment. How-

ever, as there is no detailed data available at this time to more faithfully model this, we

focus only on the dynamical interaction between the cloud and these simple atmospheres.

We assume that the cloud is following a Keplerian orbit. We start the cloud either from

1995.5, shortly before its first detection, or 1944.6, the date corresponding to the apocenter

of its current orbit (Burkert et al. 2012). In both cases the cloud is assumed to initially be

in pressure equilibrium with the background.

3. Timescales

In this section we consider the timescales associated with various physical processes

that may act within the cloud or between the cloud and the background. We do this to

estimate their relative importance to the evolution of G2. All estimates are scaled to the
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parameter values we use at the start of most of our simulations. This corresponds to the

cloud position in 1995.5, although we use the size and mass of G2 as measured in 2011.3.

This is appropriate since we initialize all of our simulations using the 2011.3 cloud properties.

Thus, the timescales we calculate give us a good estimate of the relative importance of each

of these processes near the start of our typical simulations.

First we consider radiative cooling. The associated timescale is

τcool =
1.5nckBTc

Λn2
c

≈ 2.3× 104f
1/2
V

( µ

0.614

)(
Tc

104 K

)(
Λ

Λ∗

)−1(
ρc
ρ∗c

)−1

s, (5)

where the numerator is the energy density of the cloud (assuming a gamma-law equation

of state with adiabatic index Γ = 5/3), the denominator is the volume emissivity, nc =

ρc/(µmH) is the number density of the cloud, mH is the mass of hydrogen, kB is Boltzmann’s

constant, and ρ∗c = 6.1 × 10−19 g cm−3 is the initial cloud density used in our simulations.

To get a general estimate of the cooling timescale, we use the same cooling rate Λ∗ =

3 × 10−22 erg cm3 s−1 as in Burkert et al. (2012). Since our estimated cooling timescale is

much shorter than the orbital period of τorb = 138 yr, we are justified in assuming that the

cloud will maintain its initial temperature of Tc = 104 K.

Small gas clouds like G2, embedded in a hot environment like the galactic center, will

lose mass due to evaporation as a result of thermal conduction. Whenever radiation and

magnetic field effects are unimportant, the evaporation timescale, in the case when the heat

flux reaches its limiting value (saturated state), can be estimated from (Cowie & McKee

1977)

τevap =
Mc

Ṁevap

≈ 73

(
ρc
ρ∗c

)(
ρb
ρ∗b

)−1(
Rc

R∗
c

)(
Tb

1.2× 108 K

)−1/2

yr. (6)

where

Ṁevap ≈ 1.7× 1019
(
ρb
ρ∗b

)(
Rc

R∗
c

)2(
Tb

1.2× 108 K

)1/2

g s−1 (7)

is the saturated mass loss rate due to evaporation, ρ∗b = 1.3×10−21 g cm−3 is the background

density at d1995 = 104RS for our default background, and R∗
c = 1.875 × 1015 cm is the

initial radius of our simulated cloud. This evaporation timescale is somewhat shorter than

the orbital period. It is, therefore, unclear if G2 could traverse the full distance from its
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apocenter. Further, it seems clear that once G2 breaks up as it approaches pericenter, the

resulting fragments will likely dissolve quickly.

G2 will also experience ram pressure as it traverses the galactic center. Ram pressure

will compress the cloud on its leading edge and slow its motion relative to the background gas

(Murray & Lin 2004). The importance of ram pressure, compared to the thermal pressure

of the surrounding gas, is given by the ratio v2rel/c
2
s,b, where

cs,b =

(
kBTb
µmH

)1/2

= 1.3× 108
( µ

0.614

)−1/2
(

Tb
1.2× 108 K

)1/2

cm s−1 (8)

is the sound speed of the background gas and

vrel ≈
[
2GMBH

(
1

df
− 1

di

)]1/2
= 2.8× 108

(
MBH

4.3× 106M⊙

)1/2
[(

df
d1995

)−1

−
(
dapo
d1995

)−1
]1/2

cm s−1 (9)

is the relative velocity between the cloud and the background. For simplicity, we utilize

the free-fall formula. Noting that our background is stationary, we have vrel = vc. Close to

apocenter (dapo = 1.3 × 1017 cm), where vrel = vc ≈ 0, we see that gas pressure dominates

and ram pressure is unimportant, while at the cloud’s 1995.5 location, ram pressure begins

to dominate.

Since the self-gravity of G2 is not important, the cloud will also be subject to tidal

forces from the background potential. Tidal forces will stretch the cloud in the direction of

the black hole and squeeze it perpendicular to this direction. The net result is to redistribute

the cloud along its orbital path. The acceleration of this stretching is given by

ats =
2RcGMBH

d3
. (10)

This gives a timescale for tidal stretching of

τts ≈
(
2Rc

ats

)1/2

= 2.0

(
MBH

4.3× 106M⊙

)−1/2 (
d

d1995

)3/2

yr. (11)

From this we expect the cloud to quickly be significantly tidally distorted.
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At the surface of the cloud, we have two different density fluids moving relative to

one another. This makes the surface susceptible to the Kelvin-Helmholtz instability. This

instability will disrupt the surface of the cloud on a timescale

τKH = (kvrel)
−1

(
ρc
ρb

)1/2

≈ 9.0

(
Rc

R∗
c

)(
vrel

2.8× 108 cm s−1

)−1(
ρc
ρ∗c

)1/2(
ρb
ρ∗b

)−1/2

yr, (12)

where k is the wavenumber of the perturbation. We assume k ≈ 1/Rc to be the most

disruptive wavenumber. This estimate suggests Kelvin-Helmholtz disruption may become

important, especially as the cloud approaches pericenter.

As the high-density cloud is ram-pressure decelerated by the low-density background

environment, its leading edge will be subject to disruption by the Rayleigh-Taylor instability.

In the linear regime, this instability grows on a timescale of (Murray et al. 1993)

τRT ≈
[

Mc

πR2
ckρbv

2
rel

(
ρb + ρc
ρc − ρb

)]1/2
≈ 11

(
Mc

1.7× 1028 g

)1/2(
Rc

R∗
c

)−1/2(
ρb
ρ∗b

)−1/2(
vrel

2.8× 108 cm s−1

)−1

yr. (13)

assuming the limit ρc ≫ ρb. Again the most destructive wavelength is k ≈ 1/Rc. This

timescale is comparable to the Kelvin-Helmholtz timescale indicating both processes may

act on the cloud simultaneously.

In summary, we find

τcool ≪ τts . τKH . τRT ≪ τevap . τorb . (14)

The wide array of dynamical processes and timescales illustrate why realistic numerical

simulations are so crucial. The only process that may be important that we do not capture

in this work is thermal conduction, which in any case is not expected to be a factor until

late times.

4. Simulations

The simulations use a Cartesian grid with a starting size of 14R∗
c on each side, resolved

with 256 zones in each dimension, for a total of 2563 zones. Doing so, we achieve an initial

linear resolution of ∆x, y, z = 1.0× 1014 cm, comparable to that used in the 2D simulations
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of Schartmann et al. (2012). The fact that we can achieve a resolution in 3D comparable to

that of a 2D simulation while covering the same effective volume illustrates the tremendous

advantage of using a moving mesh.

For a relatively simple case like the orbital motion of a gas cloud, it is most convenient

to fix the motion of the mesh using the Keplerian velocity, rather than try to have the

mesh dynamically adjust to the cloud’s motion. Thus, we set the grid velocity (as defined

in Appendix A) to V x,y
g (t) = ζvx,yc,Kep(t), where vc,Kep is the Keplerian velocity vector of the

cloud (assumed to lie in the x-y plane) and ζ . 1 is a parameter that allows us to account for

the moderate slowing of the cloud due to ram-pressure deceleration. We find ζ = 0.98 works

well here. In the z direction, the mesh is given a small velocity toward the z = 0 plane with

a magnitude |V z
g | = 5R∗

c/(tperi − tstart), where tperi = 2013.5 and tstart = 1995.5 or 1944.6.

This compensates for the vertical slimming of the cloud due to tidal stretching and allows us

to maintain an approximately constant resolution across the cloud in the z direction. This

vertical grid compression stops at tperi. As the cloud passes pericenter, the grid motion in

the x-y plane also changes, as we now wish to keep both the cloud and the black hole on the

grid for the remaining evolution. To accomplish this, the x and y components of the grid

velocity change to the following forms at t = 2014.7 and t = 2014, respectively:

V x
g = vxc,Kep(t)

xmax − x

xmax − xmin

(15)

V y
g = vyc,Kep(t)

ymax − y

ymax − ymin

(16)

where xmax and ymax are the maximum x and y grid positions during the time this grid

velocity is implemented. This velocity field holds the “upper right” edge of the grid fixed,

retaining the black hole on the grid, while allowing the “lower left” edge to stretch to follow

the cloud. During this phase, the linear resolution of the grid decreases. We terminate

the simulations at tstop = 2020, with a linear resolution of ∆x = 2.2 × 1014 cm and ∆y =

1.5× 1014 cm. The final z resolution is ∆z = 6.3× 1013 cm.

The boundary conditions on the edges of the grid are set to outflow conditions (all ghost

zone quantities are set equal to the values of their nearest internal-zone neighbor, except

that the velocity component normal to the boundary is set to zero if it points onto the grid).

Similar to Burkert et al. (2012) and Schartmann et al. (2012), we also introduce a spherical

“accretion radius” centered on the black hole, which is located at the origin of our coordinate

system. All gas flowing into this region is treated as being accreted. Each cycle, the amount

of tracer material entering this region is tallied, and then all hydrodynamic variables inside it

are reset to the static atmosphere solution. For all of our reported simulations, the accretion

radius is set to racc = 750RS, half the value used in Schartmann et al. (2012), although we

saw only modest differences (19%) in our measured mass accretion rate when we used the
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larger value.

For this problem, we ignore the effects of the cloud and the background gas on the

gravitational potential, and instead simply consider the (fixed) potential of the black hole.

For this work we use the pseudo-Newtonian, Paczyńsky & Wiita (1980) potential

ϕ =
GMBH

r −RS

, (17)

although at the distances we are considering, there is no practical difference between this

and a standard Newtonian potential for a point mass.

We experiment with three different equations of state: isothermal, isentropic, and poly-

tropic. The first two are special cases of the polytropic equation of state, which specifies the

pressure in the form P = κρΓ, where κ is the polytropic constant, ρ is the gas density, and

Γ is the adiabatic index. Our default EOS is the isothermal option with Γ = 1. This EOS,

together with the perfect gas law (P = kBρT/µmH), ensures the cloud remains at a constant

temperature. This can be thought of as representing a perfect balance between the heating

of the cloud by the UV background and the radiative cooling of the cloud itself. For the

isentropic case, we set Γ = 5/3, which allows the temperature to vary, but κ is held fixed.

We also consider a third, more generic, polytropic gas with Γ = 5/3, but with κ allowed

to vary. This introduces an additional degree of freedom to the gas equations in the form

of internal energy [equation (A8)]. The manner in which the pressure is recovered also

differs in this case from the previous two options. For an isentropic (and isothermal) gas,

the pressure is recovered directly from P = κρΓ, and the internal energy of the gas is not

needed. By contrast, the polytropic option derives its pressure from P = (Γ − 1)e, where

e is the independently-evolved internal energy. For purely adiabatic flows, polytropic and

isentropic equations of state with the same κ and Γ should give nearly identical results, as

the pressure will change in time according to the adiabatic scaling. If there are shocks in

the system, however, entropy is not conserved and the two equations of state may produce

significantly different solutions.

The equations of state are applied only to the cloud. The thermodynamic state of the

background gas is specified by one of the two hydrostatic solutions in Section 2, together

with the ideal gas law for the pressure. So long as cloud and background gases do not mix,

one can apply the two procedures unambiguously. However, in reality cloud and background

materials do mix as the cloud moves through the mesh, so a prescription for calculating a

reasonable thermodynamic state for regions containing both gas and cloud materials must

be provided. For our calculations we have chosen to impose a relaxation scheme that sets

the temperature of mixed zones to a mass weighted combination of background and cloud

temperatures. In practice this comes to: Tmix = (T /ρ)Tc + (1 − T /ρ)Tg, where Tc is the
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cloud temperature calculated from the appropriate equation of state, Tg is the background

temperature calculated based on the zone position relative to galactic center, and T /ρ is the

mass fraction of cloud material in the zone. We define mixed zones as those regions where

10−4 ≤ T /ρ ≤ 0.8. Once the temperature is calculated in this fashion, the pressure follows

from the ideal gas law.

Table 1 summarizes the five models we consider in this paper, exploring three main

parameters: equation of state, background model, and start date. In Section 4.1, we describe

our generic results and compare with the 2D simulations of Schartmann et al. (2012). In

Section 4.2 we compare results from the different equations of state. In Section 4.3, we

explore our two different backgrounds. In Section 4.4, we consider the two different start

dates. Finally in Sections 4.5 and 4.6, we study the mass accretion and luminosity histories

of our simulations.

4.1. General Results

Figure 1 shows snapshots of the distribution of cloud tracer material for model cc i1 b1 95

over 10 years of its orbit, starting in 2010. We do not show earlier epochs, since the cloud is

largely spherical prior to about 2010. As we are presenting three-dimensional simulations,

we generally use volume visualizations, which allows one to see the entire simulation domain.

There is, of course, an opacity factor, so one can only see through low tracer regions. Only

in Figures 2 and 3 do we show two-dimensional slices through our data.

As expected from our estimates in Section 3, the early phase of evolution is dominated

by tidal stretching. By 2012.5, the cloud covers an arc of roughly 1.0 × 1016 cm (5.3R∗
c),

compared to widths and depths of roughly 2.0×1015 cm (1.1R∗
c) and 1.4×1015 cm (0.73R∗

c),

respectively. Ram pressure forces become important at later phases when they compress the

head of the cloud and slow its orbital motion. Hydrodynamic instabilities acting throughout

the cloud history produce streams of material that drift away from the main cloud body,

particularly along its inner edge. As this material loses angular momentum relative to its

Keplerian value (through interaction with the background gas), it accelerates toward the

black hole ahead of the main cloud body. By 2013.5, this material begins to penetrate

within the accretion radius.

Beginning around 2013.5, the destruction of the cloud greatly accelerates, so that, by

2015, it has separated into numerous filaments, with additional cloud material dispersed over

a volume many times larger than the initial volume of the cloud. By 2020 it is clear that

very little, if any, cloud material remains on the original Keplerian trajectory. Instead, the
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Fig. 1.— Three-dimensional, volume visualization of cloud tracer material T for model

cc i1 b1 95, spanning the period 2010 to 2020. The small gray sphere appearing in each

panel beginning in 2012.5 indicates the accretion volume, r < racc = 750RS. The color

represents the amount of tracer (value of T ) in a particular region, with the transparency

also dependent upon the value of T (as indicated by the slanted gray bar above the color

bar). The cloud material initially has a uniform value of T0 = 2.36. An animated movie of

this model is available with the online material.
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bulk of the cloud material has been stretched out into an extended filament, anchored at the

accretion radius racc.

The overall morphology of model cc i1 b1 95 shows some similarities to the comparable

two-dimensional model, CC01, presented in Schartmann et al. (2012) (cf. their Figure 4

vs. our Figure 1). Certainly the position of the bulk of the cloud material is similar in each

corresponding epoch. However, many differences are also apparent, especially in the fine-level

detail of the accretion filaments. For these, the two-dimensional simulations appear to show

a very thin, delicate stream connecting the bulk of the cloud to the accretion radius, whereas

the three-dimensional simulations show a much more dispersed distribution. There are two

factors contributing to this difference. One is simply a projection effect. If we were to take

a single slice through one of our three dimensional simulation volumes, as we do in Figure

2, we would see a much greater level of fine detail, which is lost when looking through the

entire volume with opacity effects. The other, more crucial, factor is that two dimensional

simulations severely restrict the avenues by which the cloud can break up. The extra degree

of freedom in three dimensional simulations has a significant effect on the evolution of the

cloud, a point we return to in Section 4.5.

4.2. Equation of State Comparison

Figure 2 shows the temperature of the cloud for our three different EOS models on date

2013.5. The isothermal (Γ = 1) cloud model, cc i1 b1 95, of course maintains its initial

temperature T = 104 K. The isentropic (Γ = 5/3) model, cc i53 b1 95, shows some tem-

perature variation, but the bulk of the cloud material remains below 105 K. The polytropic

(Γ = 5/3) model, cc p53 b1 95, on the other hand, shows considerable heating, with much

of the cloud approaching 107 K. The differences between the two Γ = 5/3 simulations in-

dicate that non-adiabatic processes (i.e. shocks) play a significant role. This can be seen

more directly by noting in Figure 3 that the isentropic constant κ retains its initial value

in models cc i1 b1 95 and cc i53 b1 95, but changes quite substantially for the more general

polytropic model cc p53 b1 95.

There are also some interesting differences in the morphology of the clouds in each

of these simulations. For example, Figure 2 shows a progression towards greater cloud

disruption by the Kelvin-Helmoltz instability as internal heating increases. This is attributed

to the smaller density differential between cloud and background gas as the cloud volume

increases and its density decreases with internal heating. A smaller density differential

decreases the timescale for Kelvin-Helmholtz, as shown in equation (12). However, the total

mass lost from the cloud by this mechanism by 2013.5 is less than 3% for all three EOS
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Table 1. Model Parameters

Model EOS Γ Bkgd tstart ⟨Ṁ⟩a
(10−8 M⊙ yr−1)

cc i1 b1 95 isothermal 1 1 1995.5 5.18± 2.25

cc i53 b1 95 isentropic 5/3 1 1995.5 7.75± 6.15

cc p53 b1 95 polytropic 5/3 1 1995.5 5.37± 4.08

cc i1 b2 95 isothermal 1 2 1995.5 4.64± 2.19

cc i1 b1 44 isothermal 1 1 1944.6 19.0± 12.1

aMass accretion rate, time averaged from when accretion started

until tstop = 2020.
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Fig. 2.— Pseudocolor plots of temperatures for models cc i1 b1 95, cc i53 b1 95, and

cc p53 b1 95 on date 2013.5. These plots are two-dimensional slices in the z = 0 plane.

The black circle indicates the accretion radius, racc = 750RS, while the white contour indi-

cates a cloud tracer level of T = 0.5.
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models (based on measuring the amount of cloud material no longer contained within the

contours shown in Figures 2 and 3).

The most significant difference exhibited by the three equation of state models is the

disruption of the head of the cloud as it passes pericenter and begins to decelerate. Ram

pressure becomes increasingly important at this time as the head of the cloud slows and the

tail piles up behind. Rayleigh-Taylor instabilities are also triggered at the head of the cloud

at this time as the background gas effectively accelerates into the denser cloud material. The

timescales for Rayleigh-Taylor are shortest for greater acceleration or pressure differential

between cloud and background gas. Hence, as shown in Figure 2, the polytropic model is

least affected by Rayleigh-Taylor disruption due to its ability to achieve pressure equilibrium

with the background gas.

The polytropic equation of state model indicates that internal dynamic heating of the

cloud is considerable. Nevertheless, the extreme efficiency of radiative cooling is more than

enough to keep the temperature of the actual cloud close to 104 K. The isothermal model

should, therefore, represent the most realistic simulation of the cloud’s evolution.

4.3. Background Comparison

The convectively stable background profile given by equations (3) - (4) does not appear

to lead to a dramatically different cloud morphology at early (2012.5 and earlier) nor late

(2015 and later) times, as seen by comparing model cc i1 b2 95 in Figure 4 with model

cc i1 b1 95 in Figure 1; there is, however, some difference in the distribution of cloud material

around the accretion sphere in 2013.5. Nevertheless, we find that the average mass accretion

rate in cc i1 b2 95 is only about 10% lower than cc i1 b1 95, as shown in Table 1 and

Figure 7. This is perhaps not surprising since we artificially reset both backgrounds to their

initial profiles after each hydro cycle. This artificially stabilizes the convectively unstable

background.

Still, the small differences between the two background models can give us some esti-

mate of the level of sensitivity of our results to realistic variations in the true galactic center

environment. Specifically, our work probes the sensitivity to density and temperature. How-

ever, other properties of the galactic center may also be important. For example, radiation

and magnetic fields might affect the evolution of G2, and neither is considered in this work.
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4.4. Start Date - 1944.6 vs. 1995.5

All but one of our simulations began with a start date of 1995.5, shortly before the

discovery of G2. For the other, we started the cloud from what would be the apocenter of

its present orbit. The cloud in this simulation, cc i1 b1 44, obviously has much longer to

evolve and traverses a much greater distance through the galactic center. In Figure 5, we

show what the cloud from this model would have looked like on 1995.5. It is clear that tidal

forces are already beginning to stretch the cloud and ram pressure forces are blunting its

leading edge, as expected based on our calculations in Section 3. Clearly if G2 started as a

spherical cloud at apocenter, then its shape should have changed significantly by the time of

its discovery. Ram pressure and hydrodynamic instabilities are also stripping some material

from the edges of the cloud, generating a tail of tracer material. The mass loss to this point,

however, is negligible; the cloud still retains 99.95% of its material. Nevertheless, the earlier

seeding of these instabilities ultimately leads to a greater disruption of the cloud, starting

at pericenter passage (cf. Figure 5).

Our results support the conclusions of Burkert et al. (2012) and Schartmann et al. (2012)

that G2 must have either formed shortly before its discovery or be part of a larger, more

extended structure. Otherwise, it should have had a much more elongated appearance at the

time of its 2011 observation. It is also clear that G2 will not survive even a single passage

through the galactic center; the environment is just too hostile for a cloud of its size.

4.5. Mass Accretion

During the simulations, we trace the mass inflow through the accretion radius, racc =

750RS. Only the accreted mass that was originally part of the cloud is recorded. The

resulting total accreted mass is plotted against time in Figure 6 as a fraction of the initial

cloud mass for four of the models (we leave off the isentropic model to prevent overcrowding).

Cloud material first begins to accrete in 2013. By 2020, roughly 4% of the cloud material

has accreted in most simulations, giving a baseline mass accretion rate of 5× 10−8M⊙ yr−1.

Time-resolved mass accretion rates are shown in Figure 7. Averages and standard

deviations are also reported in Table 1. During the simulations, the time-averaged accretion

rate exhibits only stochastic changes over the seven year period we monitor. The mean

accretion rate in all models remains fairly constant, and for model cc i1 b1 95 is comparable

to the analogous two-dimensional model, CC01, from Schartmann et al. (2012). However,

whereas the two-dimensional simulations show variability up to an order of magnitude on

timescales as short as ∼ 1 month, we observe variations no larger than about a factor of
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three on similar timescales. This is another example of where the detailed evolution differs

significantly in two versus three dimensions.

One goal of this paper is to estimate how this mass accretion will affect the future

activity of Sgr A*. To do this, we need to compare our measured accretion rates against

the current estimated mass accretion rate in the galactic center. Studies (e.g. Blandford &

Begelman 1999; Yuan et al. 2003) suggest the following radial dependence

Ṁ(r) = ṀBondi

(
r

rBondi

)0.27

, (18)

with ṀBondi = 10−5M⊙ yr−1 (Yuan et al. 2003) at rBondi. This implies that the current mass

accretion rate at r = racc, where we make our measurements, should be 3.8× 10−6M⊙ yr−1.

In this case, the capture of G2 material onto Sgr A* would only boost the observed mass

accretion rate by about 1-5%, depending on which of our models we consider.

The Yuan et al. (2003) estimate, though, assumes that the gas accretes as a radiatively

inefficient accretion flow (RIAF). It could be that the cloud material, being cooler, denser,

and having a coherent angular momentum, may accrete much more efficiently onto the black

hole. If that is the case, then our observed mass accretion rate, 5− 19× 10−8M⊙ yr−1, may

lead to a significant increase in the mass accretion rate onto Sgr A*, currently estimated to

be in the range 2 × 10−9 < Ṁ < 2 × 10−7M⊙ yr−1 (Aitken et al. 2000; Bower et al. 2003;

Marrone et al. 2007). Since modeling the galactic center mass accretion rate relies on a

number of uncertain assumptions about energy transport and radiative efficiency, it will be

extremely useful to monitor the break up of G2 to better understand how Sgr A* is fed.

4.6. Luminosity

We can get a crude estimate (upper limit) of the luminosity associated with the dis-

ruption of G2 by tracking the amount of cloud energy (gravitational potential plus kinetic)

that is dissipated during our simulations. Assuming that all of this energy is radiated away

instantaneously, we can track its luminosity as a function of time as shown in Figure 8

for model cc i1 b1 95. The resulting value, ∼ 1036 erg s−1, is roughly consistent with the

predicted pericenter luminosity from Gillessen et al. (2012).
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5. Conclusions

The cloud G2 is currently approaching Sgr A* and in 2013.5, will pass it at a pericenter

distance of 3100 times the Schwarzschild radius, corresponding to 4.0 × 1015 cm. This

provides a unique opportunity to investigate directly the disruption of a cold gas clump

by its gravitational interaction with the black hole and hydrodynamic interaction with the

galactic center environment. Clear evidence for tidal velocity shearing and stretching has

already been detected (Burkert et al. 2012).

In this paper we presented five different three-dimensional, numerical, moving mesh

simulations illustrating possible future evolutionary tracks for G2. Our results generally

support previous conclusions (Burkert et al. 2012; Schartmann et al. 2012) that G2 must

have been formed recently or must be only a small piece of a larger cloud complex. In any

case, a cloud like the ones we simulated would not be expected to survive long (apparently

not even a single pericenter passage) within the galactic center.

In all of our simulations we find a roughly similar morphology for the cloud: Tidal

stretching and Kelvin-Helmholtz effects become evident first; then, around the time of peri-

center passage, ram pressure and Rayleigh-Taylor instabilities additionally help to disrupt

the cloud, which begins to fragment; as the cloud disperses over a larger volume, it begins to

lose significant amounts of angular momentum through its interactions with the background

gas; the cloud stretches into a stream of gas feeding the black hole (for us the accretion

volume r < racc) at 5 − 19 × 10−8M⊙ yr−1. This is consistent with the values seen in the

comparable two-dimensional simulation CC01 of Schartmann et al. (2012), although the

variability of that simulation was up to a factor of three larger. Looking in more detail,

we note some important differences among our models. The non-isothermal models, par-

ticularly the polytropic one, showed significantly higher cloud temperatures than the more

realistic isothermal ones (which accounted for radiative cooling of the cloud). Furthermore,

the isentropic model yielded a significantly higher mass accretion rate than the isothermal

(and even polytropic) models. The model with the denser (convectively stable) background

gave a somewhat smaller mass accretion rate than the default background. Finally, not sur-

prisingly, model cc i1 b1 44 illustrated that starting the simulation earlier leads to greater

disruption of the cloud by the time of pericenter passage.

It is uncertain how much the disruption of G2 will affect the mass accretion feeding Sgr

A*. The accretion rate observed in our simulations is comparable to the currently estimated

rate in the immediate vicinity of Sgr A*. But at the radius where we are actually measuring

the accretion, it only represents an increase of 1-5% over the currently estimated feeding rate.

Such a small change in Ṁ may not produce any measurable changes in the Sgr A* emission

(although see Moscibrodzka et al. (2012) for examples of what larger accretion rate changes
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might do to the X-ray, infrared, and millimeter emission from Sgr A*). Ultimately it will

depend on how efficiently the G2 material can get from the radius where our simulations cut

off down to Sgr A*. Regardless, the break up of G2 will provide an unprecedented oppor-

tunity to study accretion physics in the galactic center. Furthermore, our crude luminosity

estimate of ∼ 1036 erg s−1 suggests this event should be observable over the next several

years.

Concerning possible future improvements to our work, we have not explored the fol-

lowing alternate scenarios: the “spherical shell” of Burkert et al. (2012) and Schartmann

et al. (2012), the “hidden-star/proto-planetary disk” of Murray-Clay & Loeb (2011), nor

the “photoevaporating, disturbed stellar disk” of Miralda-Escude (2012). In the first, G2

is just the tip of a much larger, more massive shell of gas. This scenario may be required

to explain the lower surface brightness, cone-like structure that accompanies G2 (Gillessen

et al. 2012). The second scenario proposes that G2 is a dense, proto-planetary disk bound to

a low-mass star, which was scattered from the disk of young stars orbiting Sgr A*. The third

suggests instead that G2 is a cloud of photoevaporated gas originating from a disk around

a star that was previously disrupted by a stellar mass black hole and now produces a cloud

at every periastron passage. We have also not considered thermal conduction. This is likely

the next most important physical influence beyond those considered in this work. Thermal

conduction will be especially important at late times as the cloud breaks up. Magnetic fields

may also play an important role. For example, magnetic fields can affect the growth and

development of hydrodynamic instabilities along the cloud surface (e.g. Fragile et al. 2005).
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A. Moving Mesh

As this is the first introduction of moving meshes implemented in the Cosmos++ code,

we present a brief description of the covariant framework from which the equations are

derived. A more formal presentation of numerical methods and code tests will be considered

in another paper. Throughout this Appendix we use standard index notation in which

repeated indices represent summations over spatial components, and the raising and lowering
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of indices (to contravariant and covariant components) is done with the spatial metric, e.g.

vα = gαβv
β. We also adopt the convention in non-relativistic work of using Latin indices

(i, j, k) to represent quantities measured in Cartesian coordinates, and Greek indices (α, β, γ)

for generalized curvilinear coordinates. The indices run over the three spatial dimensions

(they do not include the time component).

Before presenting the equations, we draw an analogy with general relativistic magne-

tohydrodynamics (MHD) to define state variables and write the stress-energy tensor for a

perfect fluid (and ideal MHD) as a linear combination of the hydrodynamic Tαβ
H and magnetic

contributions Tαβ
B :

Tαβ = Tαβ
H + Tαβ

B = ρvαvβ + (P + PB)g
αβ +Qαβ − bαbβ , (A1)

where ρ is the fluid mass density, vα is the contravariant fluid velocity, P is the fluid pressure

(for an ideal gas P = (Γ − 1)e where e is the fluid internal energy density and Γ is the

adiabatic index), bα is the magnetic field, PB = gαβb
αbβ/2 is the magnetic pressure, Qαβ is

the tensor artificial viscosity used for capturing shocks, and gαβ is the spatial 3-metric tensor

for general curvilinear coordinates. Although we do not model magnetic fields in this paper,

we include the full MHD equations for completeness and future reference.

We begin by writing in flux-conserving form the evolution equations for mass, internal

energy, momentum, and magnetic induction in Cartesian coordinates (xi) as:

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 , (A2)

∂e

∂t
+
∂(evi)

∂xi
= −

(
Pδji +Qj

i

) ∂vi
∂xj

, (A3)

∂sj
∂t

+
∂(sjv

i)

∂xi
= − ∂

∂xi
[
(P + Pb) δ

i
j +Qi

j − bibj
]
− ρ

∂ϕ

∂xj
, (A4)

∂bj

∂t
+
∂(bjvi)

∂xi
= bi

∂vj

∂xi
+ δij

∂ψ

∂xi
, (A5)

where δij is the Kronecker delta tensor, and δij = gij is effectively the flat metric in Cartesian

coordinates. Additionally ψ is a scalar potential introduced as a divergence cleanser to

maintain a divergence-free magnetic field (∂ib
i = 0), and ϕ is the gravitational potential

satisfying Poisson’s equation
∂2ϕ

(∂xi)2
= 4πGρ . (A6)

Next we consider an arbitrary time-dependent transformation into generalized coordi-

nates ξα, with x(ξ, t), triad eiα = ∂xi/∂ξα, spatial 3-metric gαβ = eiαe
j
βδij, metric determinant
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√
g ≡ Det(||gαβ||), and grid velocity ẋi = ∂xi/∂t|ξ = V i

g . Applying standard transformation

rules for gradients and vector quantities in general, the MHD equations take the following

form in moving generalized coordinates:

∂
√
gρ

∂t
+

∂

∂ξα
[√
gρeαi (v

i − V i
g )
]
= 0 , (A7)

∂
√
ge

∂t
+

∂

∂ξα
[√
geeαi (v

i − V i
g )
]
= −

(
Pδαβ +Qα

β

) ∂(√g vβ)
∂ξα

, (A8)

∂
√
gsj

∂t
+

∂

∂ξα
[√
gsje

α
i (v

i − V i
g )
]

= − ∂

∂ξα

{√
geβj

[
(P + Pb)δ

α
β +Qα

β − bαbβ
]}

− √
gρeβj

∂ϕ

∂xβ
, (A9)

∂
√
gbj

∂t
+

∂

∂ξα
[√
gbjeαi (v

i − V i
g )
]
=

√
gbα

∂vj

∂ξα
+
√
ggαβejβ

∂ψ

∂ξα
. (A10)

∂

∂ξα

(
√
ggαβ

∂ϕ

∂ξβ

)
= 4πG

√
gρ , (A11)

In this form the evolved vector fields (velocity, momentum and magnetic field) are defined

in Cartesian coordinates (xi).

Taking these transformations a step further, we assume the triad matrix is a product of

two transformation bases

ejα = ej
β̂
eβ̂α , (A12)

where ej
β̂
is a static (time independent) transformation between Cartesian coordinates and

any other fixed frame coordinate set (ξα̂), for example spherical or cylindrical coordinates.

The second triad eβ̂α is a dynamical (time dependent) transformation between the static fixed

frame coordinate system (spherical, cylindrical) and generalized curvilinear coordinates. This

decomposition allows for grid motion in more general topological “background” grids besides

Cartesian. It affects only the vector conservation equations, allowing vector quantities to be

expressed in the most convenient (symmetry respecting) triad. Hence only the momentum

and magnetic field equations (A9) and (A10) are modified under this transformation as

∂
√
gsβ̂
∂t

+
∂

∂ξα

[√
gsβ̂e

α
σ̂(v

σ̂ − V σ̂
g )

]
= − ∂

∂ξα

{√
geσ

β̂
[(P + Pb)δ

α
σ +Qα

σ − bαbσ]
}

− √
gρeα

β̂

∂ϕ

∂ξα
+
√
geαγ̂

(
T σ̂γ̂ − sσ̂V γ̂

g

)
Γσ̂αβ̂ , (A13)

∂
√
gbβ̂

∂t
+

∂

∂ξα

[√
gbβ̂eασ̂(v

σ̂ − V σ̂
g )

]
=

√
gbα

∂vβ̂

∂ξα
+
√
gbσ̂(eαγ̂V

γ̂
g )Γ

β̂
ασ̂ +

√
ggασeβ̂σ

∂ψ

∂ξα
. (A14)
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The mixed index (hatted and unhatted) term Γσ̂αβ̂ in equation (A13) is actually δije
i
σ̂∂αe

j

β̂
,

and Γβ̂
ασ̂ in (A14) is eβ̂j ∂αe

j
σ̂, which follow from the Christoffel/triad gradient identities. Both

of these terms are time-independent and can be evaluated as static triad Christoffel symbols

at the initial time when dynamical and static triad coordinate systems are identical.

REFERENCES

Aitken, D. K., Greaves, J., Chrysostomou, A., et al. 2000, ApJ, 534, L173

Alexander, T. 2005, Phys. Rep., 419, 65

Anninos, P., Fragile, P. C., & Salmonson, J. D. 2005, ApJ, 635, 723

Baganoff, F. K., Maeda, Y., Morris, M., et al. 2003, ApJ, 591, 891

Blandford, R. D., & Begelman, M. C. 1999, MNRAS, 303, L1

Bloom, J. S., Giannios, D., Metzger, B. D., et al. 2011, Science, 333, 203

Bower, G. C., Wright, M. C. H., Falcke, H., & Backer, D. C. 2003, ApJ, 588, 331

Burkert, A., Schartmann, M., Alig, C., et al. 2012, ApJ, 750, 58

Burrows, D. N., Kennea, J. A., Ghisellini, G., et al. 2011, Nature, 476, 421

Cowie, L. L., & McKee, C. F. 1977, ApJ, 211, 135

Cuadra, J., Nayakshin, S., & Martins, F. 2008, MNRAS, 383, 458

Fragile, P. C., Anninos, P., Gustafson, K., & Murray, S. D. 2005, ApJ, 619, 327

Fragile, P. C., Gillespie, A., Monahan, T., Rodriguez, M., & Anninos, P. 2012, ArXiv e-prints

Fritts, D. C., Palmer, T. L., Andreassen, Ø., & Lie, I. 1996, Journal of Atmospheric Sciences,

53, 3173

Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009, ApJ, 707, L114

Gillessen, S., Genzel, R., Fritz, T. K., et al. 2012, Nature, 481, 51

Kane, J., Arnett, D., Remington, B. A., et al. 2000, ApJ, 528, 989

Krabbe, A., Genzel, R., Drapatz, S., & Rotaciuc, V. 1991, ApJ, 382, L19



– 23 –

Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2007, ApJ, 654, L57

Melia, F. 1992, ApJ, 387, L25

Miralda-Escude, J. 2012, ArXiv e-prints
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Fig. 3.— Pseudocolor plots of the isentropic constant κ = P/ρΓ, normalized to its initial

value, for models cc i1 b1 95, cc i53 b1 95, and cc p53 b1 95 on date 2013.5. These plots

are two-dimensional slices in the z = 0 plane. The black circle and white contours have the

same meaning as in Fig. 2.
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Fig. 4.— Same as Fig. 1, but for the alternate background model, cc i1 b2 95.
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Fig. 5.— Same as Fig. 1, but for the model that started in 1944.6, cc i1 b1 44, shown on

dates 1995.5 and 2013.5.
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Fig. 6.— Plot of the total amount of cloud material accreted through racc as a function of

time, represented as a fraction of the initial cloud mass, for four models.
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Fig. 7.— Plot of the instantaneous mass accretion rate through racc for four models. The

data are sampled every 100th cycle of the hydrodynamics solver, giving an effective time

sampling of ≈ 0.03 yr = 10 d.
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Fig. 8.— Light curve for model cc i1 b1 95, estimated from the dissipation of the gravita-

tional potential plus kinetic energy of the cloud.


